

НАСОСЫ РАДИАЛЬНО-ПОРШНЕВЫЕ ТИПА НР2

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ HP2 PЭ Настоящее руководство по эксплуатации содержит основные сведения о назначении и устройстве насосов радиально-поршневых нерегулируемых типа HP2, а также определяет основные правила обращения с ними. Выполнение требований и указаний данного руководства для потребителей является обязательным.

1 Описание и работа изделия

- 1.1 Назначение изделия
- 1.1.1 Насосы радиально-поршневые типа HP2 применяются в гидросистемах гидрофицированных машин соответствующих требованиям ГОСТ 17411-91, уникального металлообрабатывающего оборудования, где требуется давление до 32 МПа и нерегулируемый по величине поток рабочей жидкости с постоянным направлением.

Насосы HP2 обеспечивают получение одного двух или трех потоков рабочей жидкости.

1.1.2 Насосы работают на минеральных маслах, имеющих вязкость в эксплуатационном диапазоне температур, в пределах от 17 до 500 мм 2 /с при температуре масла соответственно от плюс 70 до плюс 10 °C.

Рекомендуемые рабочие жидкости - минеральные масла типа ВНИИ НП-403 ГОСТ 16728-78, ЭШ ГОСТ 10363-78, ИГП-30 по ТУ 38 101413-78. Номинальная тонкость фильтрации 40 мкм, класс чистоты 14.

1.1.3 Положение насоса в пространстве при работе – горизонтальное.

7 Правила хранения и транспортирования

- 7.1 Временная противокоррозионная защита по ГОСТ 9.014-78, внутренних поверхностей ВЗ-2 рабочей жидкостью; наружных поверхностей ВЗ-1- консервационным маслом НГ-203 марки А или Б.
- 7.2 Расконсервация наружных поверхностей насоса должна производиться согласно ГОСТ 9.014-78.

Расконсервация внутренних поверхностей не производится.

- 7.3 Транспортирование и хранение должно соответствовать ГОСТ 15108-80.
 - 7.4 Условия хранения по ГОСТ 15150-69:
 - для насосов исполнения УХЛ2-4 (Ж2);
 - для насосов исполнения Т2-6 (ОЖ2).
 - 7.5 Срок хранения без переконсервации 2 года

- 1.1.4 Структура обозначения насосов:
- НР насос радиальный;
- 2 порядковый номер;
- X рабочий объем, см³;
- X/ число потоков: без индекса один поток, 2 два потока, 3 три потока;
- 32 давление на выходе МПа;
- Х направление вращения: без индекса правое, Л левое;
- $X \Pi c$ повышенным давлением в картере (давление на входе) $^{+0.5}_{+0.005}$ МПа ($^{+5}_{+0.05}$ кгс/см²);
- Х УХЛ2 исполнение для работы в умеренном климате,
 - Т2 в тропическом климате.

Пример условного обозначения однопоточного насоса с рабочим объемом $710~{\rm cm}^3$, правого вращения, самовсасывающего: климатического исполнения T2:

HP2-710/32 T2

Пример условного обозначения трехпоточного насоса с рабочим объемом 1250 см³, правого вращения, самовсасывающего: климатического исполнения УХЛ2:

НР2-1250.3/32 УХЛ2

- 1.2 Технические характеристики
- 1.2.1 Габаритные и присоединительные размеры насосов приведены на рисунках 1 и 2.
- 1.2.2 Основные параметры насосов при работе на минеральных маслах вязкостью от 30 до 35 мм 2 /с приведены в таблице 1.

Т а б л и ц а 1 – Технические характеристики

Помилонов от том от от от от	Значение параметра		
Наименование параметра	710	900	1250
Номинальный рабочий объем, см ³	710	900	1250
Частота вращения, с ⁻¹ (об/мин):			l
- минимальная;	12,5 (750)		
- номинальная;	16,6 (1000)		
- максимальная	16,6 (1000)		
Номинальная подача, л/мин:			
- насоса;	632	801	1110
- одного отвода	316	267	370
Давление на выходе, МПа (кгс/см²):		I	I
- номинальное;	32 (320)		
- максимальное	40 (400)		
Давление на входе для самовсасывающих насосов, МПа $(\kappa \Gamma c/cm^2)$:			
- минимальное;	- 0,02 (- 0,2)		
- максимальное	+ 0,05 (+ 0,5)		
Номинальная мощность насоса,			
кВт	380	481,4	667,1
Холодоустойчивость насосов при транспортировании, °C	- 50		
Масса (без рабочей жидкости), кг,			
не более	900 950		

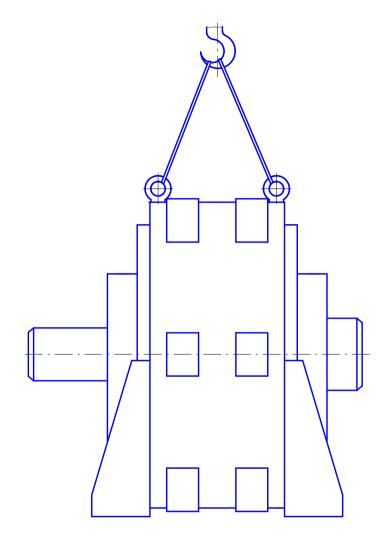
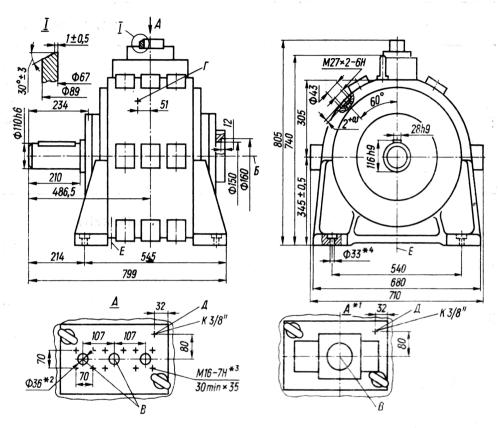
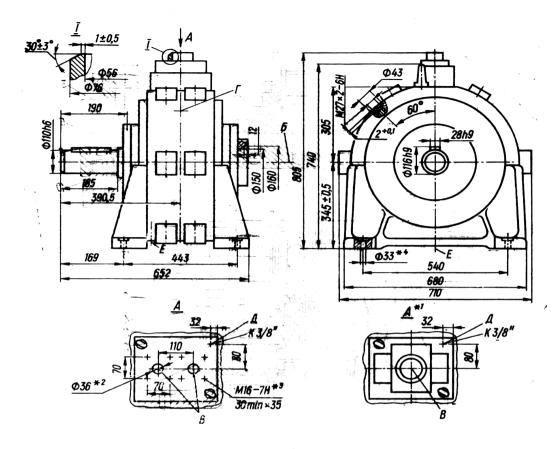



Рисунок 4 – Схема зачаливания насоса при транспортировании


Продолжение таблицы 3

Неисправность	Причина	Способ	
_	-	устранения	
Поднять давление в	Потери рабочей	Проверить наличие	
системе невозможно	жидкости в системе	утечек по соедине-	
или недостаточная	нагнетания;	ниям и элементам	
подача рабочей жид-	системы, целост		
кости к исполните-		ность трубопрово-	
льным органам		дов, корпусов и пр.;	
гидросистемы	засорены или раз-	проверить, промыть,	
	регулированы пре-	и отрегулировать	
	дохранительные	клапаны;	
	клапаны системы		
	нагнетания;		
	неисправен насос	ремонт по техдоку-	
		ментации насоса	
		или его замена	
Повышенный шум	Неисправен насос	Ремонт по техдоку-	
со стуком, внутрен-		ментации насоса	
ние удары, сопрово-		или его замена	
ждаемые колеба-			
нием давления и			
падением подачи			
Затруднено или не-	То же	То же	
возможно враще-			
ние вала			

A — для насосов HP2-1250.3/32 и HP2-900.3/32; A^{*1} — для насосов HP2-1250/32 и HP2-900/32; E — ось всасывающего отверстия; E — нагнетательные отверстия; E — ось отверстия для принудительной циркуляции масла; E — ось отверстия для выпуска воздуха; E — ось отверстия для слива масла; E — ось отверстия масла; E — ось отверстия для слива масла; E — ось отверстия масла; E — ось отверсти масла мас

Рисунок 1 — Основные габаритные и присоединительные размеры насосов типа HP2-1250/32 и HP2-900/32

А — для насосов HP2-710.2/32; A^{*1} — для насосов HP2-710/32; B — ось всасывающего отверстия; B — нагнетательные отверстия; Γ — ось отверстия для принудительной циркуляции масла; \mathcal{I} — ось отверстия для выпуска воздуха; E — ось отверстия для слива масла; \mathbf{r}^2 — 2 отв.; \mathbf{r}^3 — 8 отв.; \mathbf{r}^4 — 4 отв.

Рисунок 2 — Основные габаритные и присоединительные размеры насосов типа HP2-1250/32 и HP2-900/32

оборудования, комплектующим изделием которого они являются.

6 Характерные неисправности и методы их устранения

6.1 Перечень наиболее возможных неисправностей приведен в таблице 3.

Таблица 3 - Характерные неисправности насоса

Неисправность	Причина	Способ	
_		устранения	
Утечки масла через	Недостаточная за-	Подтянуть крепеж-	
резьбовые пробки,	тяжка поверхностей,	ные детали;	
притычные, фланце-	резьбовых и других		
вые и др. соедине-	соединений;		
ния, утечки рабочей	неисправны уплот-	заменить новыми	
жидкости по носку	няющие элементы	уплотняющими эле-	
вала		ментами	
Резкая пульсация	Наличие воздуха в	Найти и устранить	
давления в системе	системе:	причину попадания	
(по стрелке мано-		воздуха;	
метров)	срабатывание предо-	проверить и наст-	
	хранительных кла-	роить клапаны;	
	панов системы наг-		
	нетания;		
	ненормальное функ-	проверить и отрегу-	
	ционирование гид-	лировать гидроси-	
	росистемы;	стему;	
	неисправен насос	ремонт по техдоку-	
		ментации насоса или	
		его замена	

- 4.5 В процессе эксплуатации необходимо контролировать:
 - давление в напорной магистрали;
 - температуру рабочей жидкости;
- отсутствие утечек по пробкам, крышкам, фланцам, манжетным уплотнениям и т. п.

Величина давления в напорной магистрали и температура рабочей жидкости не должны превышать величины, указанной в разделе 2.

Не допускать перегрузочных режимов работы насоса.

5 Техническое обслуживание

- 5.1 Масло, заливаемое в систему, должно иметь паспорт сертификат, свидетельствующий о соответствии его требованиям стандарта или техническим условиям.
- 5.2 Во время эксплуатации насоса необходимо регулярно добавлять рабочую жидкость для поддержания необходимого уровня в баке.
- 5.3 Заливку масла в бак следует производить только через заливной фильтр, обеспечивающий необходимую очистку масла.
- 5.4 В процессе работы насоса необходимо ежедневно подвергать его осмотру на отсутствие наружной течи масла. При обнаружении течи необходимо найти причину и устранить.
- 5.5 При нормальной эксплуатации насоса первую замену рабочей жидкости следует произвести через 2 месяца после пуска в эксплуатацию, последующие замены не реже одного раза в 6 месяцев.
- 5.6 Техническое обслуживание насоса должно проводиться согласно системе технического обслуживания

- 1.3 Устройство и работа насоса
- 1.3.1 Насос состоит из двухэксцентрикового (трехэксценрикового) полого приводного вала I (рисунок 3), вращающегося на подшипниках δ , установленных в передней и задней крышках 7.

В двух (трех) радиальных расточках корпуса *12* насоса установлены корпуса *5* клапанов, на сферические опоры которых опираются сферическими головками поршни *3*.

Цилиндры 2 поршней 3 через подпятники 4 опираются на эксцентрики вала. На каждый эксцентрик вала опираются шесть поршней. Контакт поверхностей осуществляется с помощью пружин 11, установленных в поршнях.

Каждый ряд цилиндров с подпятником удерживается на валу кольцами ведения *9*.

В корпусах клапанов установлены нагнетательные клапаны 6, которые в закрытом положении удерживаются пружиной 10.

При вращении вала цилиндры совершают возвратно-поступательное движение относительно качающихся поршней.

Всасывание рабочей жидкости происходит через паз на рабочей поверхности эксцентрика вала и далее жидкость поступает через отверстие цилиндра 2 в рабочую камеру насоса, нагнетание — через клапан 6 в коллектор нагнетания a, выполненный в корпусе 12 насоса.

Насосы имеют отверстия для стравливания воздуха из корпуса (рисунок 1) и для слива рабочей жидкости.

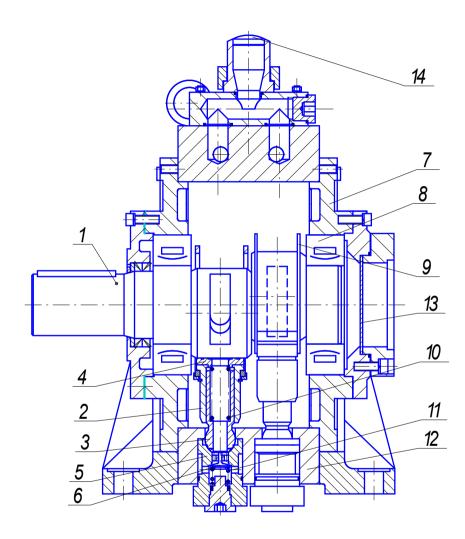


Рисунок 3 — Насос радиально — поршневой типа НР2: 1 — вал приводной; 2 — цилиндр; 3 — поршень; 4 — подпятник; 5 — корпус клапана; 6 — клапан нагнетательный; 7 — крышка; 8 — подшипник; 9 — кольцо ведения; 10, 11 — пружина; 12 — корпус; 13, 14 — заглушка.

4 Порядок работы и первый пуск

- 4.1 Перед включением насоса необходимо:
- залить в насос рабочую жидкость, для чего: открыть пробку для выпуска воздуха из корпуса насоса и через отверстие во всасывающем трубопроводе залить жидкость. Всасывающий трубопровод должен быть расположен так, чтобы при неработающем насосе рабочая жидкость не сливалась в бак;
- закрыть пробку, провернуть вал насоса от руки или тремя четырьмя кратковременными включениями электродвигателя заполнить рабочей жидкостью систему (из нагнетательного отверстия должна политься рабочая жидкость без примеси воздуха);
- провернуть вал насоса 2-3 раза в течение 10-20 с, чтобы убедиться в правильности монтажных работ.
- 4.2 При первом пуске или после длительного простоя производится пробный пуск насоса на 4-5 мин без нагрузки, в ходе которого из гидросистемы необходимо тщательно удалить воздух.

ЗАПРЕЩАЕТСЯ работа при наличии воздуха в гидросистеме.

ЗАПРЕЩАЕТСЯ пуск и остановка насоса под нагрузкой.

- 4.3 Во время пробного пуска необходимо следить, чтобы не было:
 - стуков в насосе;
- утечек рабочей жидкости из-под пробок, крышек, фланцев и манжетного уплотнения вала;
- подсоса воздуха (по характеру отработанной рабочей жидкости).

Насос должен работать плавно, без вибрации, резкого шума, толчков и т. п.

4.4 Опробовать гидросистему с насосом под нагрузкой.

- 3.9 Перед присоединением к насосу трубопроводов следует удалить транспортные заглушки и тщательно проверить чистоту присоединительных отверстий.
- 3.10 Установку насоса следует производить с таким расчетом, чтобы обеспечивались наименьшая длина и наименьшее число изгибов всасывающего и нагнетательного трубопроводов. Монтаж трубопроводов должен быть выполнен таким образом, чтобы не создавались дополнительные усилия на насос.
- 3.11 Трубы гидросистемы должны быть тщательно очищены от посторонних частиц (окалины, песок, стружка, заусенцы и пр.).
- 3.12 Все гнутые и сварные трубопроводы следует протравить, нейтрализовать и промыть. Каждый трубопровод должен быть проверен на герметичность давлением не менее двойного рабочего давления в течение 5 минут.
- В гидросистеме должна быть фильтровальная установка, обеспечивающая номинальную тонкость фильтрации 40 мкм.
- 3.13 Для защиты насоса от перегрузок в линии нагнетания должен быть предусмотрен предохранительный клапан. Для контроля давления в системе должны быть установлены манометры класса 1,5÷2,5. Подключение манометров к магистрали производится через демпферы.
- 3.14 В гидросистеме должно быть предусмотрено устройство для удаления из нее воздуха.
- 3.15 Муфта, соединяющая валы насоса и электродвигателя, должна иметь надежный защитный кожух.

- 1.3.2 Уплотнение носка вала для самовсасывающих насосов осуществляется манжетами, а для насосов с повышенным давлением в картере лабиринтным уплотнением и манжетой. Полость между лабиринтом и манжетой сообщена с дренажом, через два отверстия в передней крышке.
 - 1.4 Комплектпоставки насоса
- 1.4.1 Комплект поставки насосов приведен в таблице 2 Т а б л и п а 2 Комплект поставки

Обозначение Наименование		Кол-во
Согласно структуре	Насос в сборе	
обозначения насоса		1
НР2 РЭ	Руководство по	
	эксплуатации	1

2 Указание мер безопасности

- 2.1 Эксплуатация насосов должна соответствовать требованиям ГОСТ 12.2.086-83 и ГОСТ 12.3.002-75.
- 2.2 Муфта, соединяющая валы насоса и двигателя должна иметь надежный защитный кожух.

3 Порядок установки и подготовки к работе

- 3.1 Распаковывать насос следует осторожно, чтобы не повредить его.
- 3.2 После вскрытия тары, в которую упакован насос. необходимо произвести наружный осмотр насоса и проверить

комплектность поставки, наличие транспортных заглушек 13 и 14 (рисунок 3), закрывающих всасывающее и нагнетательное отверстия.

- 3.3 При транспортировании распакованного насоса необходимо соблюдать меры предосторожности во избежание повреждения его выступающих частей и покрытий. Зачаливание насоса при транспортировании производится за рым-болт.
- 3.4 Перед установкой необходимо тщательно очистить насос от консервационной смазки. Очистка наружных поверхностей производится ветошью, смоченной маловязкими маслами или растворителями, расконсервация внутренних поверхностей не производится.
- 3.5 Установить насос на место. При этом соединение вала насоса с валом приводного двигателя осуществляется только с помощью упругой или другой муфты, компенсирующей смещение осей валов и не создающей дополнительных нагрузок на вал насоса.

Допускаемое относительное смещение осей валов не более 0,1 мм, максимальный угол излома осей не более $0,5^{\circ}$.

ЗАПРЕЩАЕТСЯ производить установку полумуфты на вал насоса ударами.

ЗАПРЕЩАЕТСЯ осуществлять привод вала насоса с помощью устройств, создающих осевые и радиальные нагрузки на вал насоса (ременных и зубчатых передач).

3.6 Вместимость бака должна быть не менее пятиминутной подачи насоса плюс вместимость гидравлической системы.

Конструкция бака должна исключать возможность загрязнения масла извне, бак должен иметь заливную горловину с фильтром. Запрещается пуск и работа насоса при разнице температур, всасываемого масла и корпуса насоса, больше 10 °C.

В случае возникновения условий, когда указанная разница температур превышает допустимые значения, насос перед включением необходимо прогреть (охладить), например, путем создания принудительной циркуляции масла между баком и картерной полостью насоса. Для этого в корпусе насоса выполнено специальное отверстие M27×2, к которому присоединяется трубопровод, ведущий к баку. Циркуляция в этом случае может создаваться дополнительным насосом, подающим масло либо к указанному отверстию в корпусе со сливом обратно в бак через всасывающий трубопровод насоса, либо во всасывающий трубопровод со сливом через картерную полость и отверстие M27×2.

Количество прокачиваемого дополнительным насосом масла определяется опытным путем по требуемому времени прогрева (охлаждения) и по внешним условиям теплообмена насоса в конкретных условиях.

- 3.7 Насос должен устанавливаться относительно бака с таким расчетом, чтобы давление на всасывании соответствовало параметру, указанному в разделе 2.
- 3.8 При монтаже установки с насосом следует использовать антивибрационные прокладки, поглощающие вибрации насоса и приводного двигателя и снижающие общий уровень шума.